

18EC32

Third Semester B.E. Degree Examination, July/August 2021 Network Theory
Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

a. Find the equivalent resistance Rab for circuit in Fig. Q1
(a) and use it to find i.
(06 Marks)

Fig. Q1 (a)
b. Determine power supplied by the dependent source of Fig. Q1 (b), using nodal analysis.
(06 Marks)

Fig. Q1 (b)
c. Determine current through 2Ω resistor of Fig. Q1 (c) using mesh analysis.
(08 Marks)

Fig. Q1 (c)
2 a. Using source transformation and source shifting techniques, find voltage across 2Ω resistor in Fig. Q2 (a).

Fig. Q2 (a)
b. Find $\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}$ in the circuit of Fig. Q2 (b) using mesh analysis.
(06 Marks)

Fig. Q2 (b)
1 of 5
c. Compute V_{1}, V_{2} in the circuit of Fig. Q2 (c) using nodal analysis.

Fig. Q2 (c)
3 a. For the circuit in Fig. Q3 (a), use the superposition theorem to find I.
(06 Marks)

Fig. Q3 (a)
b. Using Norton's theorem, find current through 5Ω resistor in Fig. Q3 (b).
(06 Marks)

Fig. Q3 (b)
c. State Millman's theorem, using Millman's theorem find I_{L} in Fig. Q3 (c).
(08 Marks)

Fig. Q3 (c)
4 a. Determine the Thevenin equivalent at terminals A-B of the circuit in Fig. Q4 (a). (06 Marks)

Fig. Q4 (a)
b. Compute the value of R that results in maximum power transfer to it in Fig. Q4 (b). Find the maximum power.
(06 Marks)

Fig. Q4 (b)
c. State Reciprocity theorem. Find V_{x} and verify Reciprocity theorem for circuit in Fig. Q4 (c).
(08 Marks)

Fig. Q4 (c)
5 a. In the network shown in Fig. Q5 (a), the switch K is opened at $\mathrm{t}=0$. Solve for the values of $\mathrm{V}, \frac{\mathrm{dV}}{\mathrm{dt}}$ and $\frac{\mathrm{d}^{2} V}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$.
(10 Marks)

Fig. Q5 (a)
b. In the network shown in Fig. Q5 (b), a steady state is reached with the switch K open. At $t=0$ switch K is closed. Solve for the values of $I_{4}, I_{2}, V_{C}, \frac{d I_{1}}{d t}, \frac{d I_{2}}{d t}$ at $t=0^{+}$.
(10 Marks)

Fig. Q5 (b)
6 a. In the network shown in Fig. $6(\mathrm{a}), \mathrm{K}$ is changed from position a to b at $\mathrm{t}=0$. Solve for $\mathrm{i}, \frac{\mathrm{di}}{\mathrm{dt}}$, $\frac{\mathrm{d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}$ at $\mathrm{t}=0^{+}$, The steady state having reached before switching.
(10 Marks)

Fig. Q6 (a)
b. In the network of Fig. Q6(b), the switch K is closed at $t=0$ with zero capacitor voltage and zero inductor current. Solve for (a) V_{1} and V_{2} at $t=0^{+}$(b) V_{1} and V_{2} at $t=\infty$, (c) $\frac{d V_{1}}{d t}$ and $\frac{\mathrm{dV}_{2}}{\mathrm{dt}}$ at $\mathrm{t}=0^{+}$,
(d) $\frac{d^{2} V_{2}}{{d t^{2}}^{2}}$ att $=0^{+}$.
(10 Marks)

Fig. Q6 (b)

7 a. In the circuit given in the Fig. Q7 (a) switch is closed on position 1 at $\mathrm{t}=0$ and at $\mathrm{t}=500 \mu \mathrm{~s}$, switch is moved to position 2. Obtain the equation of current in both intervals. Use Laplace transforms.
(10 Marks)

Fig. Q7 (a)
b. Determine the Laplace transform of the periodic sawtooth waveform, as shown in Fig. Q7 (b).
(10 Marks)

Fig. Q7 (b)
8 a. A voltage pulse, of unit height and width T is applied to the circuit in the Fig. Q8 (a) at $\mathrm{t}=0$. Determine the voltage across the capacitance C as a function of time.
(10 Marks)

Fig. Q8 (a)
b. Determine the Laplace transform of waveform given in Fig. Q8 (b).
(10 Marks)

Fig. Q8 (b)

9 a. With respect to series resonant circuit, show that resonant frequency is equal to the geometric mean of two half power frequencies.
(08 Marks)
b. A series resonant circuit includes $1 \mu \mathrm{~F}$ capacitor, resistance of 16Ω and an inductance of L henry. If the bandwidth is $500 \mathrm{rad} / \mathrm{sec}$, determine (i) ω_{r}
(ii) Q
(iii) L .
(06 Marks)
c. Find the value of L for which the circuit resonates at a frequency of $1000 \mathrm{rad} / \mathrm{sec}$ for the circuit in the Fig. Q9 (c).
(06 Marks)

Fig. Q9 (c)
10 a. Derive Z-parameters in terms of hybrid parameters.
b. Determine the Z-parameters of the network shown in Fig. Q10 (b).

Fig. Q10 (b)
c. For the network shown in Fig. Q10 (c), find the Y parameters.

Fig. Q10 (c)

